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Covariant Feynman derivation of Schrodinger's equation in a 
riemannian space 
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Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL, 
UK 

Received 23 January 1974 

Abstract. Ruse's covariant Taylor expansion is used to give a neat and rapid derivation of 
the covariant Schrodinger equation for a particle moving in a riemannian space. I t  is pointed 
out that the calculation is basically the same as Kolmogorov's derivation of the diffusion 
equation, and a covariant form of the stochastic differential equation is given. 

1. Introduction 

The quantization of a system described by the classical lagrangian 

c! = 1,2, 

ie a free particle on a riemannian space, V,, of metric gap,  has been described by De Witt 
(1957) and lately by others. In particular the Feynman quantization (Feynman 1948) has 
been considered and we would like to make some further methodological comments on 
this interesting question. 

It seems reasonable that Schrodinger's equation should take the covariant form 

where A2 is the (covariant) Laplace-Beltrami (Lame) operator, 

A~ = g- 1'2 a,(g=pg1'2 a,) 
(see eg Podolsky 1928, Kramers 1957, De Witt 1952). Logically there is no reason why 
the Schrodinger equation should take the particular covariant form (2), nor indeed why 
it should be covariant at all. The quantization of a classical system is not a logical 
procedure. Rather, since the world is (we think) a quantum-mechanical one, the logical 
process runs from the quantum to the (approximate) classical domain. Nevertheless, 
whilst this attitude is epistemologically correct it is not very helpful. The practical 
approach seems to be to start from a classical system, say (l), then to guess a Schrodinger 
equation, say (2), and finally to compare with experiment. Such comparison is really the 
only justification for the hamiltonian -)V2 + V of elementary quantum mechanics 
corresponding to the classical lagrangian $q2 - I/. A more pertinent example is that of 
the spherical top, the lagrangian for which is given by (I), V,  being a three-dimensional 
sphere, S 3 ,  with antipodal points identified, S3/Z2. The quantum mechanics of this 
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system was first given by Reiche and Rademacher (Reiche and Rademacher 1926, 
Rademacher and Reiche 1927) and the Schrodinger equation was just that of (2). Ex- 
periment justifies this choice. More interestingly (2) is also the form of the Schrodinger 
equation used for the asymmetrical top, the configuration space of which is a deformed 
three-sphere. In this case the scalar concomitants of the curvature tensor, eg R, R,,RZP 
etc, which can always be added into (2) as potentials, are still constant, as they are for S3. 
Therefore no such terms have ever been considered by the professional molecular 
spectroscopists (eg King 1947). 

The Feynman quantization of the system can now be deduced by folding together 
the short-time (quasi-classical) propagator of (2) : 

exp[iS(q”, t”Jq’, t’)] (3) (q”, ,”lq‘, t’), = g”- 114~1/2(~n, t ” l q ’ ,  t’)g’- 114 

S(q”, t”lq’, t’) = l: 
where 

(L+&R)dt 
classical 
path 

and where D is the van Vleck determinant (see De Witt 1957 for details). 

of the propagator (q”, t”lq’, t ‘ )  of equation (2): 
In this’manner De Witt (1957) arrived at the formal functional integral representation 

(q”, t’lq’, t’)  = Jlr enp( i l y ( L + f R )  df)9[q] 

where 
Jf = lim (27&)-+*(”+’) 

n - rw  
f + O  

and the invariant measure 9[q]  is given by 
n 

(4) 

This is a constructional approach to Feynman quantization and it is of interest to reverse 
the procedure and derive Schrodinger’s equation from (4) in the manner of Feynman 
(1948). Such a calculation is mentioned by De Witt (1957, footnote on p 395) and has 
been explicitly detailed by Cheng (1972). It is also contained in our earlier work (Mayes 
and Dowker 1973). 

If one starts from the form (4) then there is no a priori reason to include the &R 
term, which will then appear in the Schrodinger equation as a potential. One might 
take this as indicating that there should be a &R term in (2) and indeed there is some 
strength in this argument if one believes that the Feynman postulate is more basic than 
simply writing down a Schrodinger equation and, further, if one believes that this postu- 
late is to be written down in as ‘simple’ and as ‘natural’ a way as possible. Thus there is 
no a priori reason why the measure in (4) should be given by (5), but this is the most 
natural choice. 

Bearing these remarks in mind we shall take Feynman’s principle in the form of (4) 
where Jlr is to be determined and 9[q] is given by (5 ) .  Our aim in this paper is to present 
a somewhat neater and more attractive derivation of (2) from (4) than the ones available 
(eg Cheng 1972). 
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2. Derivation of SchriSdinger’s equation 

Basically the calculation is the same as that in Kolmogorov’s (1928, 1931) derivation of 
the backwards and forwards diffusion equations (see eg Levy 1948, p 66). In this deriva- 
tion, and in the theory of diffusion in general, important roles are played by the averages?, 

a;@’, 4’) = lim (ia)- dq”(q”” - 4’”) (q”, t’ + &‘, t‘)  
f + O  s 
f + O  s b“,(t‘, q’) = lim (ic)- dq”(q””- q’a)(q’‘p - q’8) (q”, t’ + Elq’, t‘), ( 6 )  

the drift ‘vector’ and local variance matrix respectively. We note that in order to avoid 
duplication we are using the quantum-mechanical notation. In diffusion theory 
(q”, t”lq’, t ’ )  would be a probability density function, and there would be no ‘i’. 

Conventionally, the averages in (6)  are taken over the ‘final’ variables q” and we obtain 
Schrodinger’s equation in the form 

(7) 

(cf Yosida 1948, for forward diffusion equation). For compactness we have put 
$’’ = $(q”, t”), a;“ = a;(t”, q”) etc. 

.a+” = g”- 1 / 2  a ; ( g ~ r l / 2 a ~ + 7 - + g  11-  112 a; a;;(g~~1/2bp9+17 
atii 

Alternatively averages over the initial variables q‘ can be used, 
n 

a;(t”, 4”) = lim (iE)-  dq‘(q”“ - 4’”) (q“, r”lq‘, t” - E )  
f + O  J 

f + O  s bpp(t”, 4”) = lim (k)- dq‘(q”“ - q’“)(q‘’p - 4‘6) (q”, t”lq’, t“ - E)? 

Time reversal invariance actually implies the relations 

a; = -a; 

b“Fp = bi’fi. 

The fact that no ‘potential’ term seems to appear in the classical derivations of the 
diffusion equation is due to the assumption that the total final probability equals unity, 
ie that 

(q”, t”lq’, r’) dq” = 1.  s 
lim (ia)- s (q”, t’ + Elq’, t ‘ )  dq” = lim [(ic)- - V(q’, t’)]. 

This condition is not valid for quantum mechanics. Rather we should use 

(10) 
C-10 f + O  

t In this formula dq is the invariant volume element. 
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It is easy to show that for the particular expressions 

equations (7) and (9) are the same as (2). Therefore we have only to show that these 
values, and condition (IO) with I/ = 0, do result from the Feynman postulate which 
gives the specific short-time form 

lim (q",  t' + &', t ' )  - N(E)  exp[ir- 'R(q", q') + i@"c] (12) 
f + O  

where R is the Ruse-Synge world function related to the geodesic distance s between 
q" and q' by R = t s 2 .  

Expression (12) is substituted into, say, (6) and the limits calculated by expanding 
R about q' (or q" if (8) is used). The first term, 46- lg'uB(q''a - q'")(q"@ - q'@), is kept in the 
exponential and the remainder expanded in a power series. This allows one to use the 
standard expressions for the moments of a gaussian and the result is finally equation (2). 
The calculation is a little involved algebraically essentially because the expansions used 
are not covariant, being expansions in (q""-q'"). Our modest aim here is simply to 
present a neater, covariant calculation which results when one uses the covariant 
Taylor series of Ruse (1931) described in the next section. 

3. Covariant Taylor theorem 

Take two non-singular points of V, ,  q" and q', and require the value of the scalar function 
4(q) at q' in terms of quantities at q" (or vice versa). Ruse (1931) shows that 

4(q') = ~ ( q " ) - R " " ~ , , , , + ~ " " R ~ " ~ , , , . B , .  - . . . (13) 

where Ra is just the derivative 

and the object 4,a,..,u,,, is the mth (affine) extension of 4 (Veblen 1927, chap 6, Veblen 
and Thomas 1923) and equals the mth covariant derivative plus, in general, terms de- 
pending on the riemannian curvature. It is a tensor and so the expansion (13) is a co- 
variant one. 

For our purposes at the present we need only know that the second affine extension 
coincides with the second covariant derivative 4iraB = V,V&. Thus we have 

4(q') = 4(q") -a""$\'; a + +w"ns"4;i; + . . . (14) 

and, interchanging q' and q", 

W') = 4(q')-na'4;, (I + -@'R@'q!Jil a@ - . . . . (1 5 )  

Further remarks on the expansion (13) will be found in 0 5. 
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4. Covariant derivation of Schriidinger's equation 

The calculation proceeds exactly as in Kolmogorov (1931) or Feynman (1948). We 
write 

(q",  t"Iq', t" - E ) $ ( q ' ,  t") dq' - $(q", t") 

and seek to use the expansion (14) applied to 9. Flrstly, however, we consider the con- 
dition (10). If we use the short-time form (12) we find for the left-hand side of (10) 

lim (ic)- ' 1 N(E) exp(ic- 'R + i&R"E) dq' (17) 
€-0 

where we should now state that for convenience we are now averaging over the initial 
variables q'. 

The advantage of using the 0" as expansion variables is that we can use the important 
formulae for R : 

which can be thought of as the expansions for R. In view of these formulae it is clear 
that we should transform integration variables in (17) from the q'" to the R'". If this is 
done we find 

with dR" = ll, dQ"", where the biscalar A((, 4') equals g"- '12Dg'- ' I 2  and 
D = detil - -Q~, ,J .  Before the limit can be evaluated A must be expanded about q". 
This expansion reads 

A(q", 4') = [A(q", q') - Q""A 1 1  a,, + w"RP"A 1 1  a,,fi , ,  - . . . ] , I  +,o . 
Now the coincidence limits of A, All,  and Ailup have been determined by De Witt (1964) 
by a purely covariant method which involves only the Ricci identity. He finds 

AIqj-,,, = 1, Ajlrr4q'-q,, = 0, Al(z,,p,,lq,4q,r = ++R,fi(q'O. 

A-'"'', 4') = l-@"R"'R,,(q")+ .. . . 
Thus? 

(21) 
This series is substituted into (20) and the integrals performed using the well known 
expressions 

Jym.. . exp( &gafix'xfi) 0 dx" = (271i~)"~g- '~~  

Higher moments give higher powers of E on the right-hand side and this is why higher 
terms in the above expansions do not contribute in the limit of vanishing E. 

t Alternatively we could have used the expansion of Ruse's invariant p, = A-' ,  developed by Walker (1942). 
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It is easy to see that the &R term coming from the expansion of the exponential will 
cancel the &R term arising from (21) and (23). Also the first term in (21), with (22), yields 
the standard normalization .,+'-(E) = (2ni4-"' and so we have 

lim (ic)- (q", t" + cJq', t " )  dq' = lim (k)- ' 
t + O  €+O 

which now allows us to  rewrite equation (16) as 

! l - 1 / 2 A - l  dart x g  

where we have used the expansion (14) for I) and have transformed variables as before. 
Application of (2 1) and (23) quickly yields the Schrodinger equation 

as expected. Note that the Laplace-Beltrami operator appears directly and not piece- 
meal, as in the calculations referred to earlier (cf Cheng 1972). With this result we have 
achieved our object of presenting a covariant calculation. The chief advantage is that 
there is no need to expand the action to  fourth order in (4" - 4') and, therefore, no need 
for the quartic moments of a gaussian. This leads to a considerable saving in labour. 

We should now like to make a few comments on the preceding calculations the first 
being technical in character and concerns the expansion given in 8 3. 

5. Comments 

The covariant expansion (13) is derived by Ruse (1931) by first working in normal 
coordinates and then transforming to an arbitrary system (cf also Ruse 1932). Clearly 
in our calculation we could have left this last step until the very end. This is probably a 
more efficient method in that one doesn't have to develop more than one needs. In 
fact the only expansion required is that for the metric in normal coordinates, *gab (eg 
Veblen 1927) : 

from which everything else follows easily. Thus, referring to equation (17), dq' is replaced 
by 

*gl''Il dy" = (*g''')O(l -&(*R,,)oy"yP+ . . .)n dy' (24) 

and Q equals f(*g,B)oy"yP. In this case @(y) is expanded in an ordinary Taylor series in y 
and Schrodinger's equation appears in the invariant form 

which, in general coordinates, is just (1). Expansion (24) for *g"' is just that for A - '  
(equation (21)). (If higher order terms had been needed then probably Walker's (1942) 
method would have been superior.) 
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Equation (25) introduces us to derivatives of t,b with respect to y evaluated at y = 0. 
These are, by definition, the 'extensions' of I) referred to in 5 3 and now is the appropriate 
time to say that the extensions of a scalar are just the symmetrized covariant derivatives. 
This allows us to rewrite the expansion (13) in a form more in keeping with modern 
differential calculus. We introduce the r-legs A:, which are such that 

= L a l o g a b  
a b  

where the f b  are constants, say gab = qab with q diagonal elements & 1 only, and then 
project everything onto these legs. In other words we go over to an anholonomic co- 
ordinate system (see Schouten 1954). Thus we define 

Ra" = n ~ n u "  

and the anholonomic (or directional) covariant derivative 

$:ab ... c = J-;Abs * * J-T$Ilap...y. 

Then the expansion reads 

41 = $11 -na"4; + @fob 4 k b -  . , 

which is genuinely invariant under general coordinate transformations. 

expansion is then well known and is 
A particularly interesting case is when the Riemann space is a group manifold. The 

4(q') = exp(taXi)4(q") = 4" + cxi4'' ++etbx;xg'4" + . . .  
where the 5" are the canonical coordinates of the group element q'q''-l, In fact, 
y = -0.'' and we have the equality 

4 : ( a b  ... c )  = x(axb . . . x c ) 4  
where the X, are the generators of the group. 

These considerations may seem superfluous but if it is desired to discuss fields other 
than scalar ones (cf Ito 1963) it is virtually imperative to use an appropriate and covariant 
formalism and the more aspects of this that can be displayed the better. 

We now wish to turn to another aspect of our calculation. Let us consider the general 
situation in which we do not specify the actual form of limc-o (q", t '+~Iq' ,  t ' ) .  We only 
say that (q",t"lq',t') is a biscalar. Then we can define a tensor drift p a  and a tensor 
variance pfl by 

pf(q", t") = lim (id- ' dq'P"(q", q') (q",  t"Iq', t" - E )  
€-+O s 

PfB(q", t") = lim (ic)- ' dq'"''"", q')Rfi''(q'', q') (q", t"lq', t" - €), 
€+O s 

and similar expressions for final averages over q". In contrast to the a" of equation (8) 
(ie the usual Kolmogorov mean) the p Q  is a vector simply because Ru"(q", q') is a vector at 
q" and a scalar at  q'. The corresponding Schrodinger equation is now found precisely as 
in the preceding section. It occurs immediately in the manifestly covariant form 
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Of course the equation obtained by the standard (non-covariant) method, (9), is equiva- 
lent to this one, the relation between the parameters being 

1 y 8 r a  ae = Pf+ZBI y p  

bf, = pf,. 
An alternative presentation of the standard method is that using Ito's theorems on 

stochastic differentials (Ito 1950, theorem 3.2, 1951, McKean 1969). Thus the stochastic 
differential equation, 

dq" = iaf(q, t) dt + afa(q, t )  dx', (26) 

where x"( t )  is a standard 'Feynman-Wiener process', defines a quantum-mechanical 
stochastic process q"(t) of mean af and variance bf, = ppP = a:4afbg4b. Roughly speaking 
dx" dxb E i fb  dt and dq" dq, Y ipfS dt. 

Equation (26) is really a shorthand way of writing the stochastic integral equation 

q"" - 4'" = q"(t") - qa(t') = ir i dtaf(q(t), t) + dx"(t)ofa(q(t), t) 
1" 

i' 

and this shows immediately why the calculation is non-covariant. The left-hand side is 
not a vector. Clearly, in order to make the Ito formalism covariant, one should use the 
world function Nq", q') for the stochastic process q(t) in a systematic way. In other words 
q" and q' are two points on a stochastic process q(t) and instead of the integral equation 
giving (q"" - 4'") we ought to have fla"(q", 4'). More precisely, consider 

as a function of q(t) and apply Ito's theorem to it. We find 

fl""(4", q') = J-; i dt[af(q) 49fl"(q, q') + t a fb (q )ml )gbc  a, dyfl"(q, 4'11 

+ 1; dx'afa(q) a,na(q,q')* 

The equivalent differential form is found by letting t' tend to t" and we find, on using 
the coincidence limit 

lim 8; a;fla"(q", q') = - r;y(q'f), 
g'+q" 

that 

do"" lim Qa"(q", q') 
['-bf" 

= i[af(q") - $pfY(q")r;y(q")] dt + afa(q") dx' 

= ipp" dt + a;h" dx" 

which is a covariant diferential equation, in contrast to (26). 

of normal coordinates, y', ie 
The same result can be obtained in reverse, so to speak, by writing down the definition 
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(Schouten 1954) and then letting q' tend to q" whilst keeping the term of second order in 
y. If we assume a general form for dy", like that of (26), we easily find for the parameters 
those values given in (27), allowing for a minus sign, y" = -0"" (Ruse 1931). 

For the special values of the parameters, ( l l ) ,  the vector pa is zero and the set of 
vectors 0," can be taken as the r-legs : 

0: = i:, 

and equation (27) takes the particularly simple form 

do"" = A,"(q") dx" 

which shows that the most natural 'diffusion' on the manifold is given by the most 
natural injection of a standard 'diffusion' on the tangent spaces (cf Gangolli 1964). 

This is all we wish to say about the Ito formalism except to note that it is not strictly 
necessary to use a mid-point expansion of a stochastic integral in order to achieve a 
covariant diffusion equation. This modification of the Ito differential is due to 
Stratonovich (1968) (see also the useful remarks by McLaughlin and Schulman 1971). 
Further comments on this and other aspects of the stochastic differential must be reserved 
for another time. 

6. Conclusion 

We do not have a great deal to say in conclusion, having exhausted ourselves in the 
previous section. Perhaps we can content ourselves with voicing the opinion that re- 
casting the theory in the language of modern, coordinate-free differential geometry 
should prove rewarding, particularly the formalism of stochastic differentials. 

Extension to the field theory domain presents little difficulty. 
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